
JOURNAL OF COMPUTATIONAI. PHYSICS 59, 324-330 (1985)

Optimizing a Lattice QCD Simulation Program

PH. DE FORCRAND, D. LELLOUCH,* AND C. ROIESNEL+

Centre de Physique ThPorique de I’Ecole Polytechnique,f
Plateau de Palaiseau, 91128 Palaiseau, Ceder, France

Received April 10, 1984; revised August 28, 1984

Three computer-time saving techniques for lattice QCD programs are presented. They con-
cern the link updating order, the compacting of the data and the pseudo-heatbath
algorithm. 0 1985 Academic Press, Inc.

LATTICE QCD PROGRAM OPTIMIZATION

With the advent and the by now widespread use of numerical simulations of
Quantum Chromo Dynamics (QCD) on a lattice, the share of computer resources
used by High Energy theoretical physicists has been steadily increasing these last
few years. Their skill in using these resources may not have followed at the same
space. In this paper we want to describe only those specific features of the program
we use to generate field configurations on a lattice which could improve the
efficiency of any similar program. The general Monte Carlo method of lattice QCD
simulations has been described elsewhere [l-3], and the reader is referred to these
papers for more details on the algorithm. Since lattice QCD simulations these days
use typically 100 h of CDC 7600 equivalent CPU time or more, we think it
worthwhile to describe three computer time saving techniques which have not yet
been used to our knowledge. Optimized in this fashion, our program, which runs
on a CRAY-IS computer, takes approximately 85 @ink update (75 ps with the
standard 10 hits Metropolis algorithm), with provision for accommodating a 124
lattice in the 850K words available memory.

Section I describes the updating order of the links, Section II the storage of the
data, and Section III the optimization of the updating algorithm proper, after
Ref. [4],

1. LINK UPDATING ORDER

We choose to update sequentially all 8 links radiating from a lattice site, in the
arbitrary order 1 to 4 for links in the positive l-4 directions, then 5 to 8 for links in

* Laboratoire de Physique Nuclbaire et des Hautes Energies, Ecole Polytechnique, Palaiseau, France.
+ CERN, Theory Division, Geneva, Switzerland.
t Groupe de Recherche du CNRS No. 48.

324
0021-9991185 $3.00
Copyright 0 1985 by Academic Press, Inc.
All rights 01 reproduction in any form reserved.

LATTICE QCD PROGRAM OPTIMIZATION 325

3
!

1 2

i
1

?liizF

i

I
i

FIG. 1. “Corner” links (-) and “axial” links (...) in three dimensions.

the negative directions. (See Fig. 1, in 3 dimensions.) After all 8 such links have
been updated, another lattice site is explored, and only half of the sites need be so
considered to complete a sweep of the whole lattice.

This updating order is different from the one commonly used, where links in the
positive directions only are changed before one proceeds to the next site. We believe
it presents several advantages:

(i) one can make maximal use of intermediate results common to the
neighbourhood of several links. With the Wilson action S = x q (1 - f Re Tr q), the
updating procedure requires the knowledge of the sum of 6 matrices associated with
the “incomplete plaquettes,” which would be completed by the link being updated.
Such incomplete plaquettes are made up (see Fig. 1) of one “comer” times an
“axial” link. The same corner can be reused later on for the updating of this axial
link, so that the number of matrix products necessary to calculate the set of
“incomplete plaquettes” for each link is reduced from

6 x 2 = 12 with the conventional method, to

6x(1 +f)=9.

This essentially represents a 25% savings in computer time for this part of the
program, since matrix multiplication is by far the most time consuming task in the
algorithm.

Of course the savings is greater for actions involving larger planar loops too: it
amounts to a factor -3 for the Symanzik tree-level-improved action (TI action)
[S] involving 2 x 1 plaquettes, and a factor >4 for an action proposed by Mutter
and Schilling [6] including g-shaped loops as well.

(ii) Given the precalculated set of “corners,” one can include measurements
of small planar and nonplanar loops at very little cost in CPU time in the Monte
Carlo procedure for the “axial” links. With the TI action we could thus measure all
planar loops up to size 4 x 2 at each sweep for an increase -5 % in CPU time. Of
course this possibility should be used with caution if one wishes to extract loop
loop correlations because a given, “frozen” configuration is usually required in that
case. But we think it is a nice opportunity to accumulate, without using any tem-

326 DE FORCRAND, LELLOUCH, AND ROIESNEL

porary storage device, high statistics on small loop averages, for which more
sophisticated methods [7] only give moderate improvements.

(iii) Our choice of link updating order lends itself well to vectorization. All
sites on a hypercubic sublattice of spacing 2a (or face-centered sublattice of spacing
4a for the TI action) can be treated independently, yielding a uniform density of
heat-exchange centers throughout the lattice. Then this hypercubic sublattice is
moved around into another of 8 different positions until one sweep through the lat-
tice is completed. Remarking that links to be paired into a corner always belong to
the same sublattice, it would be possible to store the links as 8 distinct sublattices
and thus minimize the time spent fetching links in the main lattice. This has not
been implemented, in order to keep the data structure and analysis simple.

(iv) This updating scheme seems to us well suited for future developments of
lattice simulations. We tried to perform multiple sequences of updates of the 8 axial
links, and simultaneous updates of these 8 links as well, in both cases with the hope
of decreasing sweep-to-sweep correlation, and with somewhat disappointing results.
But it is also quite easy to implement gauge fixing, by multiplying all 8 links
radiating from a site by some arbitrary SU(3) matrix. And our way of grouping
links might be quite appropriate for blocking procedures.

2. DATA COMPACTION

The challenge to data compaction was to store 4 x 124 = 82944 SU(3) matrices
into a 1M word 64-bit computer memory, practically reduced to -850K words for
code and data. The “natural” way to represent a 3 x 3 matrix with complex
elements was obviously unsatisfactory.

We reduced the amount of required memory to one third of this, i.e., 6 words per
matrix. One should note that, in theory, an SU(3) matrix can be represented by
(P - 1) = 8 real numbers, but this leads to very inconvenient computations.

The way we did it is a compromise between size, computing speed and accuracy.
We only store the lirst 2 rows of each matrix; the third one is then computed as the
cofactors of the previous rows; an extra factor of 2 in storage is obtained using a
half precision 32-bit representation. Since the Cray machine instructions do not
provide hardware half-precision operations, we had the choice of the representation.
We used a fixed point representation, where each real matrix element x is represen-
ted by

Z(x) = INT[(x + 1)(231 - 1) + 41.

This is possible because each element of any SU(N) matrix is less than 1 in
modulus. The accuracy of such a method is -4.6 x lo- lo, better than a standard
32-bit floating point half-precision representation, and worse than the full precision
representation by a factor 3 x lo-‘/4 x 10-low 10’. To keep rounding errors under

LATTICEQCD PROGRAMOPTIMIZATION 327

control, we reunitarize the link matrices every fifth iteration in general, so that the
unitarity defect, defined as

CABS[U(l, 1). u*(l, 2)+ U(2, 1). u*(2,2)+ U(3, 1). u*(3,2)]

+ABS[U(l, 1). u*(l, l)+ U(2,l). u*(2, l)+ U(3,l). u*(3, l)]

stays at the lop8 level. The unitarization routine then takes 2.5 psec/link.
The routines to pack and unpack matrices, written in CRAY Assembly Language

(CAL), are extremely fast: their asymptotic speeds are 2 Clock-Periods=
25 ns/word to pack (or unpack). We reach such a speed by “chaining” together up
to 6 functional units, yielding a top instruction-rate of 6 x 80 = 480 Mops (mega-
operations per second)!

3. PSEUDO-HEATBATH ALCKI~ITHM

We first tried a simple Metropolis algorithm [S], where one obtains a new link
candidate by multiplying the old link by some random SU(3) matrix. Our random
sample had a centered quasi-Gaussian distribution in the Lie algebra, with a spread
governed by a simple feedback mechanism which maintained the acceptance rate
around 45%. The resulting auto-correlation on the plaquette average, defined as

(q (sweep n + i) q (sweep i)) - (q (sweep n + i))(q (sweep i))

is shown on Fig. 2, for the TI action on a 124 lattice at /I = 3.6 (analogous to /3- 5.3
for the Wilson action). On the same plot appear results obtained with the pseudo-
heatbath algorithm of Ref. [4], using 2, 3, and 4 successive W(2) heatbaths for
each W(3) matrix. The improvement brought by the latter algorithm is less drastic
than in Ref. [4], where the action and p-value were different. The choice obviously
depends on the CPU time needed for each algorithm. We eventually decided for the
pseudo-heatbath algorithm with 3 W(2) subgroups, because we could reduce its
execution time even on our vector-machine, and because, due to our extended TI
action, -3 of the CPU time was spent computing the “incomplete plaquettes”
anyway.

One practical difficulty to implement the pseudo-heatbath algorithm on a vector
machine consists in generating efficiently a random variable with distribution
&+ Jy 1 - x between -1 and +l, where ki varies with the link i being updated. We
could not generate such a distribution directly, so we implemented a filter which
would reject some of the input values to ensure the correct output distribution after
enough passes. Unfortunately (see Ref. [9]) the rejection rate of the filter is not
predetermined, so that it is not possible to come out with the exact distribution
after some fixed number of attempts through the filter. We discovered systematic

328 DE FORCRAND, LELLOUCH, AND ROIESNEL

.4 -

.3 -

.2 -

.l -

‘\\
0 ,I,r,r,l,lII~lIi~ll\

0 1 2 3 4 5 6 7 8 9 10

SWEEP INTERVAL

FIG. 2. Auto-correlation on the plaquette average for a 124 lattice at fi = 3.6 with TI action. Curves
correspond to the Metropolis algorithm with 10 hits/link (-. -) and the pseudo-heatbath algorithm with
2, 3, and 4 SU(2) subgroups (---). For each algorithm, C(n) was measured over a sample of 300 sweeps
through the thermalized lattice.

effects upon trying to set to 1 the random variables which had not been generated
after a fixed number of passes. So we decided instead to leave the filter loop
untouched (and not vectorized) but to prepare, by vectorized operations, the input
distribution so that it matches the final one as well as possible. This is feasible
through the use of tables [lo], which take some memory space and are not prac-
tical on our CRAY computer. Instead we found that the average number of
attempts through the filter could be reduced from 8 or more (starting from an
exponential distribution ek+ when ki is large) to less than 1.3 by starting from e.7k+
(see Fig. 3). A still better input distribution, which we chose, is that plotted in Fig. 3
where the turnover point between exponential and uniform distribution can be

LATTICE QCD PROGRAM OPTIMIZATION 329

FIG. 3. Typical form of the distribution ekx p (-). Various input distributions are ekX (I),
e’7kX (2), exponential + uniform (3).

adjusted as a function of kj. It requires more preparation than the simple exponen-
tial distribution, and yet executes faster on our machine because all preparatory
operations are performed vectorially (about 10 times as fast as the nonvectorized
filter operations).

CONCLUSION

We have been using for our simulations the CRAY-1S computer of the CCVR.
For an LX4 lattice or larger, the times spent in each part of our Monte Carlo
program, with the Wilson or the TI action, are given in Table I, in microseconds
per link. The main routines in our program have been written in CRAY Assembly

330 DE FORCRAND, LELLOUCH, AND ROIESNEL

TABLE I

Time” Spent in Each Part of Our Monte Carlo Program,
for the Wilson or the Tree-Level Improved (TI) Action

Incomplete plaquettes
Data compaction
Metropolis 10 hits
Pseudo-heatbath 3 subgroups

Wilson TI

26 73
7 18

42 42
52 52

“ In &link.

Language by one of us (D.L.); standard Fortran code runs 0 (30 %) slower.
Depending on the size of the lattice and the available memory, data compaction
may or may not be necessary. The speed of the rest of the program does not depend
on that option, since the arithmetic is always performed with 64-bit accuracy. Some
degradation does occur for small lattices, because the vector of independent links
which can be updated together is shorter; but the update time per link on a 44 lat-
tice still falls below 100 ps. (without data compaction). In any case, our main point
is that the three techniques described above can be used with profit on any
machine.

Note added in proof: Following the recent suggestion of Kennedy et al. [II], we have now vectorized
the first two attempts at passing through our pseudo-heatbath filter. With the initial probability dis-
tribution e-7k,r [(2) on Fig. 31, our streamlined routine now takes 32 &link instead of 52 for 3 Sc1(2)
subgroups.

ACKNOWLEDGMENTS

We thank H. Lipps for discussions, and E. Marinari for giving us his original pseudo-heatbath routine.
We gratefully acknowledge the technical support of P. Herchuelz and the CCVR CRAY assistance team.

REFERENCES

1. M. CREUTZ, Phys. Rev. D 21 (1980), 2308.
2. D. BARKAI AND K. J. M. MORIARTY, Comput. Phys. Commun. 25 (1982), 57; 26 (1982), 477; 27

(1982), 105.
3. D. BARKAI, K. J. M. MORIARTY, AND C. REBBI, BNL preprint BNL-33953.
4. N. CABIBBO AND E. MARINARI, Phys. Left. B 119 (1982), 387.
5. mi. DE FORCRAND AND C. ROIESNEL, Phys. Left. B 137 (1984), 213; CERN preprint TH-3858.
6. K. H. MUTTER AND K. SCHILLING, Wuppertal preprint WUB 83-24.
7. G. PARISI, R. PETRONZIO, AND F. RAPUANO, Phys. Lett. B 126 (1983), 250.
8. N. METROPOLIS, A. W. ROSENBLUTH, M. N. ROSENBLUTH, A. H. TELLER, AND E. TELLER, J. Chem.

Phys. 21 (1953), 1087.
9. K. C. BOWLER AND B. J. PENDLETON, Nucl. Phys. B 230 (FS 10) (1984), 109.

10. F. GUTBROD, communication at the Lattice Coordinating Meeting, CERN, Dec. 1983.
11. A. D. KENNEDY, J. KUTI, S. MEYER, AND B. J. PENDLETON, Santa Barbara preprint NSF-ITP-84-62.

