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Three computer-time saving techniques for lattice QCD programs are presented. They con- 
cern the link updating order, the compacting of the data and the pseudo-heatbath 
algorithm. 0 1985 Academic Press, Inc. 

LATTICE QCD PROGRAM OPTIMIZATION 

With the advent and the by now widespread use of numerical simulations of 
Quantum Chromo Dynamics (QCD) on a lattice, the share of computer resources 
used by High Energy theoretical physicists has been steadily increasing these last 
few years. Their skill in using these resources may not have followed at the same 
space. In this paper we want to describe only those specific features of the program 
we use to generate field configurations on a lattice which could improve the 
efficiency of any similar program. The general Monte Carlo method of lattice QCD 
simulations has been described elsewhere [l-3], and the reader is referred to these 
papers for more details on the algorithm. Since lattice QCD simulations these days 
use typically 100 h of CDC 7600 equivalent CPU time or more, we think it 
worthwhile to describe three computer time saving techniques which have not yet 
been used to our knowledge. Optimized in this fashion, our program, which runs 
on a CRAY-IS computer, takes approximately 85 @ink update (75 ps with the 
standard 10 hits Metropolis algorithm), with provision for accommodating a 124 
lattice in the 850K words available memory. 

Section I describes the updating order of the links, Section II the storage of the 
data, and Section III the optimization of the updating algorithm proper, after 
Ref. [4], 

1. LINK UPDATING ORDER 

We choose to update sequentially all 8 links radiating from a lattice site, in the 
arbitrary order 1 to 4 for links in the positive l-4 directions, then 5 to 8 for links in 
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FIG. 1. “Corner” links (-) and “axial” links (...) in three dimensions. 

the negative directions. (See Fig. 1, in 3 dimensions.) After all 8 such links have 
been updated, another lattice site is explored, and only half of the sites need be so 
considered to complete a sweep of the whole lattice. 

This updating order is different from the one commonly used, where links in the 
positive directions only are changed before one proceeds to the next site. We believe 
it presents several advantages: 

(i) one can make maximal use of intermediate results common to the 
neighbourhood of several links. With the Wilson action S = x q (1 - f Re Tr q ), the 
updating procedure requires the knowledge of the sum of 6 matrices associated with 
the “incomplete plaquettes,” which would be completed by the link being updated. 
Such incomplete plaquettes are made up (see Fig. 1) of one “comer” times an 
“axial” link. The same corner can be reused later on for the updating of this axial 
link, so that the number of matrix products necessary to calculate the set of 
“incomplete plaquettes” for each link is reduced from 

6 x 2 = 12 with the conventional method, to 

6x(1 +f)=9. 

This essentially represents a 25% savings in computer time for this part of the 
program, since matrix multiplication is by far the most time consuming task in the 
algorithm. 

Of course the savings is greater for actions involving larger planar loops too: it 
amounts to a factor -3 for the Symanzik tree-level-improved action (TI action) 
[S] involving 2 x 1 plaquettes, and a factor >4 for an action proposed by Mutter 
and Schilling [6] including g-shaped loops as well. 

(ii) Given the precalculated set of “corners,” one can include measurements 
of small planar and nonplanar loops at very little cost in CPU time in the Monte 
Carlo procedure for the “axial” links. With the TI action we could thus measure all 
planar loops up to size 4 x 2 at each sweep for an increase -5 % in CPU time. Of 
course this possibility should be used with caution if one wishes to extract loop 
loop correlations because a given, “frozen” configuration is usually required in that 
case. But we think it is a nice opportunity to accumulate, without using any tem- 
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porary storage device, high statistics on small loop averages, for which more 
sophisticated methods [7] only give moderate improvements. 

(iii) Our choice of link updating order lends itself well to vectorization. All 
sites on a hypercubic sublattice of spacing 2a (or face-centered sublattice of spacing 
4a for the TI action) can be treated independently, yielding a uniform density of 
heat-exchange centers throughout the lattice. Then this hypercubic sublattice is 
moved around into another of 8 different positions until one sweep through the lat- 
tice is completed. Remarking that links to be paired into a corner always belong to 
the same sublattice, it would be possible to store the links as 8 distinct sublattices 
and thus minimize the time spent fetching links in the main lattice. This has not 
been implemented, in order to keep the data structure and analysis simple. 

(iv) This updating scheme seems to us well suited for future developments of 
lattice simulations. We tried to perform multiple sequences of updates of the 8 axial 
links, and simultaneous updates of these 8 links as well, in both cases with the hope 
of decreasing sweep-to-sweep correlation, and with somewhat disappointing results. 
But it is also quite easy to implement gauge fixing, by multiplying all 8 links 
radiating from a site by some arbitrary SU(3) matrix. And our way of grouping 
links might be quite appropriate for blocking procedures. 

2. DATA COMPACTION 

The challenge to data compaction was to store 4 x 124 = 82944 SU(3) matrices 
into a 1M word 64-bit computer memory, practically reduced to -850K words for 
code and data. The “natural” way to represent a 3 x 3 matrix with complex 
elements was obviously unsatisfactory. 

We reduced the amount of required memory to one third of this, i.e., 6 words per 
matrix. One should note that, in theory, an SU(3) matrix can be represented by 
(P - 1) = 8 real numbers, but this leads to very inconvenient computations. 

The way we did it is a compromise between size, computing speed and accuracy. 
We only store the lirst 2 rows of each matrix; the third one is then computed as the 
cofactors of the previous rows; an extra factor of 2 in storage is obtained using a 
half precision 32-bit representation. Since the Cray machine instructions do not 
provide hardware half-precision operations, we had the choice of the representation. 
We used a fixed point representation, where each real matrix element x is represen- 
ted by 

Z(x) = INT[(x + 1)(231 - 1) + 41. 

This is possible because each element of any SU(N) matrix is less than 1 in 
modulus. The accuracy of such a method is -4.6 x lo- lo, better than a standard 
32-bit floating point half-precision representation, and worse than the full precision 
representation by a factor 3 x lo-‘/4 x 10-low 10’. To keep rounding errors under 
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control, we reunitarize the link matrices every fifth iteration in general, so that the 
unitarity defect, defined as 

CABS[U(l, 1). u*(l, 2)+ U(2, 1). u*(2,2)+ U(3, 1). u*(3,2)] 

+ABS[U(l, 1). u*(l, l)+ U(2,l). u*(2, l)+ U(3,l). u*(3, l)] 

stays at the lop8 level. The unitarization routine then takes 2.5 psec/link. 
The routines to pack and unpack matrices, written in CRAY Assembly Language 

(CAL), are extremely fast: their asymptotic speeds are 2 Clock-Periods= 
25 ns/word to pack (or unpack). We reach such a speed by “chaining” together up 
to 6 functional units, yielding a top instruction-rate of 6 x 80 = 480 Mops (mega- 
operations per second)! 

3. PSEUDO-HEATBATH ALCKI~ITHM 

We first tried a simple Metropolis algorithm [S], where one obtains a new link 
candidate by multiplying the old link by some random SU(3) matrix. Our random 
sample had a centered quasi-Gaussian distribution in the Lie algebra, with a spread 
governed by a simple feedback mechanism which maintained the acceptance rate 
around 45%. The resulting auto-correlation on the plaquette average, defined as 

( q (sweep n + i) q (sweep i)) - ( q (sweep n + i))( q (sweep i)) 

is shown on Fig. 2, for the TI action on a 124 lattice at /I = 3.6 (analogous to /3- 5.3 
for the Wilson action). On the same plot appear results obtained with the pseudo- 
heatbath algorithm of Ref. [4], using 2, 3, and 4 successive W(2) heatbaths for 
each W(3) matrix. The improvement brought by the latter algorithm is less drastic 
than in Ref. [4], where the action and p-value were different. The choice obviously 
depends on the CPU time needed for each algorithm. We eventually decided for the 
pseudo-heatbath algorithm with 3 W(2) subgroups, because we could reduce its 
execution time even on our vector-machine, and because, due to our extended TI 
action, -3 of the CPU time was spent computing the “incomplete plaquettes” 
anyway. 

One practical difficulty to implement the pseudo-heatbath algorithm on a vector 
machine consists in generating efficiently a random variable with distribution 
&+ Jy 1 - x between -1 and +l, where ki varies with the link i being updated. We 
could not generate such a distribution directly, so we implemented a filter which 
would reject some of the input values to ensure the correct output distribution after 
enough passes. Unfortunately (see Ref. [9]) the rejection rate of the filter is not 
predetermined, so that it is not possible to come out with the exact distribution 
after some fixed number of attempts through the filter. We discovered systematic 
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FIG. 2. Auto-correlation on the plaquette average for a 124 lattice at fi = 3.6 with TI action. Curves 
correspond to the Metropolis algorithm with 10 hits/link (-. -) and the pseudo-heatbath algorithm with 
2, 3, and 4 SU(2) subgroups (---). For each algorithm, C(n) was measured over a sample of 300 sweeps 
through the thermalized lattice. 

effects upon trying to set to 1 the random variables which had not been generated 
after a fixed number of passes. So we decided instead to leave the filter loop 
untouched (and not vectorized) but to prepare, by vectorized operations, the input 
distribution so that it matches the final one as well as possible. This is feasible 
through the use of tables [lo], which take some memory space and are not prac- 
tical on our CRAY computer. Instead we found that the average number of 
attempts through the filter could be reduced from 8 or more (starting from an 
exponential distribution ek+ when ki is large) to less than 1.3 by starting from e.7k+ 
(see Fig. 3). A still better input distribution, which we chose, is that plotted in Fig. 3 
where the turnover point between exponential and uniform distribution can be 
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FIG. 3. Typical form of the distribution ekx p (-). Various input distributions are ekX (I), 
e’7kX (2), exponential + uniform (3). 

adjusted as a function of kj. It requires more preparation than the simple exponen- 
tial distribution, and yet executes faster on our machine because all preparatory 
operations are performed vectorially (about 10 times as fast as the nonvectorized 
filter operations). 

CONCLUSION 

We have been using for our simulations the CRAY-1S computer of the CCVR. 
For an LX4 lattice or larger, the times spent in each part of our Monte Carlo 
program, with the Wilson or the TI action, are given in Table I, in microseconds 
per link. The main routines in our program have been written in CRAY Assembly 
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TABLE I 

Time” Spent in Each Part of Our Monte Carlo Program, 
for the Wilson or the Tree-Level Improved (TI) Action 

Incomplete plaquettes 
Data compaction 
Metropolis 10 hits 
Pseudo-heatbath 3 subgroups 

Wilson TI 

26 73 
7 18 

42 42 
52 52 

“ In &link. 

Language by one of us (D.L.); standard Fortran code runs 0 (30 %) slower. 
Depending on the size of the lattice and the available memory, data compaction 
may or may not be necessary. The speed of the rest of the program does not depend 
on that option, since the arithmetic is always performed with 64-bit accuracy. Some 
degradation does occur for small lattices, because the vector of independent links 
which can be updated together is shorter; but the update time per link on a 44 lat- 
tice still falls below 100 ps. (without data compaction). In any case, our main point 
is that the three techniques described above can be used with profit on any 
machine. 

Note added in proof: Following the recent suggestion of Kennedy et al. [ II], we have now vectorized 
the first two attempts at passing through our pseudo-heatbath filter. With the initial probability dis- 
tribution e-7k,r [(2) on Fig. 31, our streamlined routine now takes 32 &link instead of 52 for 3 Sc1(2) 
subgroups. 
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